Fulvic Acid Gum Mouth Infections

Infections, Biofilms / Gingivitis and Periodontitis

Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections

Overall, CHD-FA was shown to possess broad-spectrum antibacterial activity, with a supplementary function of being able to down-regulate inflammation. These properties offer an attractive spectrum of function from a naturally derived compound, which could be used as an alternative topical treatment strategy for oral biofilm diseases. Further studies in vitro and in vivo are required to determine the precise mechanism by which CHD-FA modulates the host immune response.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849008/

This study has demonstrated that the naturally derived compound CHD-FA exhibits broad-spectrum antimicrobial activity against orally relevant biofilm organisms. Although a four species mixed biofilm model was used in this study, we are aware that antimicrobial activity against this model does not fully represent all mixed biofilms that are found within the oral cavity, but only a few of species relevant in periodontal disease. It further shows that CHD-FA has the capacity to modulate the immune response and down-regulate the biofilm induced expression of pro-inflammatory mediators in oral keratinocytes. However, a further limitation of this study was only a selected number of inflammatory mediators were investigated, thus precluding other host factors for consideration, which may influence the inflammatory response even further. Collectively, these properties make CHD-FA an attractive option for the development of a mouthwash to treat microbial oral disease; although further studies in vitro and in vivoare first required to further define the mode of action of this unique compound.

References

  1. Peyyala R, Ebersole JL. Multispecies biofilms and host responses: “discriminating the trees from the forest” Cytokine. 2013;13(1):15–25. doi: 10.1016/j.cyto.2012.10.006. [PMC free article] [PubMed] [CrossRef]
  2. Yamakami K, Tsumori H, Sakurai Y, Shimizu Y, Nagatoshi K, Sonomoto K. Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by streptococcus mutans. Pharm Biol. 2012;13(2):267–270. [PubMed]
  3. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012;13:528521. [PMC free article] [PubMed]
  4. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;13(3):223–229. doi: 10.4161/viru.23724. [PMC free article] [PubMed] [CrossRef]
  5. Herrera D. Chlorhexidine mouthwash reduces plaque and gingivitis. Evid Based Dent. 2013;13(1):17–18. doi: 10.1038/sj.ebd.6400915. [PubMed] [CrossRef]
  6. Najafi MH, Taheri M, Mokhtari MR, Forouzanfar A, Farazi F, Mirzaee M, Ebrahiminik Z, Mehrara R. Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dental research journal. 2012;13(3):305–308. [PMC free article][PubMed]
  7. Quirynen M, Avontroodt P, Peeters W, Pauwels M, Coucke W, van Steenberghe D. Effect of different chlorhexidine formulations in mouthrinses on de novo plaque formation. J Clin Periodontol. 2001;13(12):1127–1136. doi: 10.1034/j.1600-051X.2001.281207.x. [PubMed] [CrossRef]
  8. Jones CG. Chlorhexidine: is it still the gold standard? Periodontol 2000. 1997;13:55–62. doi: 10.1111/j.1600-0757.1997.tb00105.x. [PubMed] [CrossRef]
  9. Pemberton MN, Gibson J. Chlorhexidine and hypersensitivity reactions in dentistry. Br Dent J. 2012;13(11):547–550. doi: 10.1038/sj.bdj.2012.1086. [PubMed] [CrossRef]
  10. Smith K, Robertson DP, Lappin DF, Ramage G. Commercial mouthwashes are ineffective against oral MRSA biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;13(5):624–629. doi: 10.1016/j.oooo.2012.12.014. [PubMed] [CrossRef]
  11. Turkoglu O, Becerik S, Emingil G, Kutukculer N, Baylas H, Atilla G. The effect of adjunctive chlorhexidine mouthrinse on clinical parameters and gingival crevicular fluid cytokine levels in untreated plaque-associated gingivitis. Inflamm Res. 2009;13(5):277–283. doi: 10.1007/s00011-008-8129-z. [PubMed] [CrossRef]
  12. Liu Y, Zhang Y, Wang L, Guo Y, Xiao S. Prevalence of porphyromonas gingivalis four rag locus genotypes in patients of orthodontic gingivitis and periodontitis. PloS one. 2013;13(4):e61028. doi: 10.1371/journal.pone.0061028. [PMC free article] [PubMed] [CrossRef]
  13. Houri-Haddad Y, Halabi A, Soskolne WA. Inflammatory response to chlorhexidine, minocycline HCl and doxycycline HCl in an in vivo mouse model. J Clin Periodontol. 2008;13(9):783–788. doi: 10.1111/j.1600-051X.2008.01290.x. [PubMed] [CrossRef]
  14. Ramage G, Milligan S, Lappin DF, Sherry L, Sweeney P, Williams C, Bagg J, Culshaw S. Antifungal, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front Microbiol. 2012;13:220. [PMC free article] [PubMed]
  15. Sherry L, Jose A, Murray C, Williams C, Jones B, Millington O, Bagg J, Ramage G. Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol. 2012;13:116. [PMC free article] [PubMed]
  16. Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N. Antifungal activity of coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast. 2011;13(8):611–617. doi: 10.1002/yea.1890. [PubMed] [CrossRef]
  17. Gandy JJ, Snyman JR, van Rensburg CE. Randomized, parallel-group, double-blind, controlled study to evaluate the efficacy and safety of carbohydrate-derived fulvic acid in topical treatment of eczema. Clin Cosmet Investig Dermatol. 2011;13:145–148. [PMC free article] [PubMed]
  18. CLSI. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard – eighth edition. CLSI document M11-A8, Wayne, PA: CLSI. 2012;13(2)
  19. CLSI. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard – nineth edition. CLSI document M7-A9, Wayne, PA: CLSI. 2011;13(2)
  20. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot JL. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;13(9):1494–1500. doi: 10.1038/nport.2008.141.[PMC free article] [PubMed] [CrossRef]
  21. Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. Journal of Visualized Experiments : JoVE. 2012;13:e3857. [PMC free article][PubMed]
  22. Pratten J, Smith AW, Wilson M. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine. J Antimicrob Chemother. 1998;13(4):453–459. doi: 10.1093/jac/42.4.453. [PubMed] [CrossRef]
  23. Erlandsen SL, Kristich CJ, Dunny GM, Wells CL. High-resolution visualization of the microbial glycocalyx with low-voltage scanning electron microscopy: dependence on cationic dyes. J Histochem Cytochem. 2004;13(11):1427–1435. doi: 10.1369/jhc.4A6428.2004. [PMC free article][PubMed] [CrossRef]
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;13(4):402–408. doi: 10.1006/meth.2001.1262. [PubMed] [CrossRef]
  25. ten Cate JM, Zaura E. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective? Adv Dent Res. 2012;13(2):108–111. doi: 10.1177/0022034512450028.[PubMed] [CrossRef]
  26. van Rensburg CE, van Straten A, Dekker J. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J Antimicrob Chemother. 2000;13(5):853. doi: 10.1093/jac/46.5.853. [PubMed] [CrossRef]
  27. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;13(1):50–62. doi: 10.1128/CMR.19.1.50-62.2006. [PMC free article] [PubMed] [CrossRef]
  28. Sabi R, Vrey P, van Rensburg CE. Carbohydrate-derived fulvic acid (CHD-FA) inhibits carrageenan-induced inflammation and enhances wound healing: efficacy and toxicity study in rats. Drug Dev Res. 2011;13(1):18–23.
  29. Berker E, Kantarci A, Hasturk H, Van Dyke TE. Blocking Pro-inflammatory cytokine release modulates peripheral blood mononuclear cell response to porphyromonas gingivalis. J Periodontol. 2012;13(9):1337–1345. [PMC free article] [PubMed]
  30. Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. Oral epithelial cell responses to multispecies microbial biofilms. J Dent Res. 2013;13(3):235–240. doi: 10.1177/0022034512472508.[PMC free article] [PubMed] [CrossRef]

__________________________

Evaluating the Effect of Fulvic Acid on Oral Bacteria and Cancerous Oral Cells

The suppressive mechanisms observed by fulvic acid on both S. mutans and SCC-25 cells could improve overall oral health.

https://scholarworks.iupui.edu/handle/1805/5369

__________________________

Study of Fulvic Acid: A Natural Dietary Supplement

Further testing is needed but the compound shows promise and can be employed as an effective ingredient of mouthwash and other such antiseptic products.

https://scholarworks.iupui.edu/handle/1805/5363

__________________________